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AIIIInt:i-A closed form solution is presented for the enerlY release rate at the onset of kinkina of a
straipt crack in an infinite elastic medium subjected to a predominantly Mode I Ioadina. The solution is
accurate to the second order of kink anale and is carried out by the method which models the kink as a
continuous distribution of infinitesimal edle dislocations. On the basis of the maximum enem release rate
criterion, simple expressions are obtained for the critical kink anale and the critical applied stress. The
examination of the results shows that the second order solutions are in very good qreement, up to fairly
large kink anales, with numerical results reported by others. It is also analytically established that the Irwin
formula for the energy release rate remains valid under the predominantly Mode I loadina, provided that
the stress intensity factors in the formula are appropriately interpreted.

I. INTRODUCTION
In accordance with concepts in brittle fracture, much effort has been devoted by a number of
workers to the calculation of the stress intensity factors for kinked cracks and, recently, a
convincing solution has been presented in [1), in which the crack is modeled as a continuous
distribution of infinitesimal edge dislocations. In addition to the knowledge of the stress
intensity factors, a fracture criterion must first be established from physical laws in order to
analyze the phenomenon of crack kinking. There are currently three fracture criteria available
for this purpose, namely, the maximum hoop stress criterion[2), the minimum strain energy
density criterion [3) and the maximum energy release rate criterion which is a generalization of
Griffith's original energy release rate criterion[4, 5]. The first two criteria stand on their own
merits, whereas the last one seems to stem from the fundamental mechanic principle of
minimum potential energy. In recent years, several analytical studies have appeared, which
concern the so-called mixed-mode fracture and employ the maximum energy release rate
criterion [6-1 1); in particular, the results in [9-11) appear to be rather complete. Except for [6], all
results so far obtained are numerical ones.

The main objective of the present paper is to study the energy release rate at the onset of
kinking of a straight crack under a predominantly Mode I loading. To this end, the problem of a
kinked crack in an infinitely extended medium is first analyzed by the method which models the
kink as a continuous distribution of infinitesimal edge dislocations. In the analysis, the complex
potential functions(12) satisfying the traction-free conditions on the main crack, are employed,
similarly to [I, 13]. Therefore, the resulting integral equations for the dislocation density
functions are defined on the line of the kink only, and an analytical solution, accurate to the
second order of kink angle, is obtained. Since the density functions correspond to the
derivatives of the displacement-discontinuities across the kink with respect to the distance from
the end of the kink, the energy release rate is easily obtained with the aid of the tractions that
prior to the onset of kinking act on the line of the kink.

Closed form expressions for the stress intensity factors and the energy release rate at the
onset of kinking are obtained for small kink angles. These expressions indicate that the Irwin
formula[14) for the energy release rate remains valid at the onset of kinking under the
predominantly Mode I loading, provided that the stress intensity factors in this formula are
interpreted as those corresponding to a kink of almost zero length. On the basis of the
maximum energy release rate criterion, simple expressions are also obtained for the critical
kink angle and the critical applied stress. The examination of the results shows that these
simple analytically obtained expressions agree very well with the numerical results presented in
[II), up to fairly large kink angles.
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2. STATEMENT OF PROBLEM

We consider the plane strain problem of a kinked crack in an infinite elastic medium. Far
from the crack, the medium is subjected to a uniform tensile stress which is nearly per-·
pendicular to the main crack, so that if crack kinking occurs, the kink angle w. would be
sufficiently small. The fized rectangular Cartesian coordinate system Xa, shown in Fig. 1, is
used; throughout this work, Greek indices take on the values 1,2, unless otherwise stated. We
also use a supplementary rectangular Cartesian coordinate system, (0:> as shown in Fig. 1. The
relation between the two coordinate systems is given by

(1)

where z = XI + ;X2' (= (I +i(2' In what follows. the superscript 0 is used to identify functions in
the supplementary coordinate system.

With the aid of the elastic potential functionscl>(z), 'I'(z)[12]. which are holomorphic in the
region occupied by the medium, we express the boundary conditions of the problem as follows:

(a) On the surface of the main crack L, U22 - iUl2 =0:

(2)

(b) On the surface of the kink L',U~2 - iUY2 = 0:

(c) Far from the crack:

....(z) = uil ; ui2 +0 (-"zl). "'() ui2 - uil +' oo + 0 ( 1) I I't' ., T Z = 2 IUl2 + ? as z ~CX;.

Here. UafJ denotes the stress component referred to the xa-coordinates,

uil = uOO sin2'Y, ui2 = uOO cos2'Y, ui2 = uOO sin 'Y cos 'Y,

and an overbar is used to indicate the complex conjugate.
In view of (I), cl>0«) and ~«) are given by

c"+,
L

--:-c::========:~z.._-s__ Xl
-2a

,
..

a
Fig. I. Geometry and coordinate systems.

(3)

(4)

(5)

(6)
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3. SINGULAR INTEGRAL EQUATIONS FOR SMALL KINK ANGLE

When an edge dislocation line perpendicular to the z·plane, passes through a point
z =a( =s eiw) in an infinite medium which is subjected to the remote tension prescribed in the
previous section and contains a traction-free crack located on - 20 < XI < 0, then the cor
responding elastic potentials <J).(z, a) and 'i'.(z, a) are found, in the absence of rigid body
rotation, to be

where

<J)T(z) = Un ~ ;ui2 [X(z) (z +a) -1],

iA [ iw{ I I X(z) I X(z) I}<J)!(z,a)=-- (3e -+-_--.----_.-_
2 Z-a Z-a X(a) z-a X«a) z-a

--iw- {I X(z) a+a I X(z) I}]
+{3e (a-a) (z-a)e X(a)' a(a+2a)' z-a- X(a)' (z-a)2 ,

'i'T(z) = - <J)T(z) +<J)T(i) - z<J)T'(z),

'i"(z, a) = - <J)!(z) +<J)!(i, a) - z<J)1'(z),

X(z) = I/\/(z(z +20»,

(7)

(8)

(9)

(10)

(I I)

(12)

(13)

(\4)

Here, E is Young's modulus and" Poisson's ratio. The quantity ba denotes the component of
the Burgers vector in the direction of the (a-axis. The branch of X(z) is taken such that
X(z)-+ lIz as Izl-+oo. These expressions are essentially equivalent to those in[ll.

In order to formulate the original problem, edge dislocations of the kind mentioned above
are distributed continously on the line of the kink. Consequently, the elastic potential functions,
<J)(z) and 'i'(z), which satisfy the boundary conditions (2) and (4), are expressed as

(15)

The density function (3«(.) is related to the displacement-discontinuities across the kink,

(16)
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where
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Here, u",o denotes the displacement component referred to the (a-coordinates.
It is readily verified that the displacement field determined from the above elastic potential

functions satisfies the requirement for the single valuedness of the displacement on any closed
circuit surrounding the kinked crack; see Appendix A.

Before setting up the corresponding singular integral equations, we introduce the following
nondimentional notation:

(\8)

In view of (6), the elastic potential functions referred to the (a-coordinates, are obtained from
(15). Substituting these potential functions into (3), we obtain a system of singular integral
equations for the density functions. Since the integral equations have generalized Cauchy
kernels of complicated form, it seems impossible to obtain closed form solutions. However,
when I and ware sufficiently small, we can reducet these to the following very simple integral
equations which are accurate to the second order in w:

where C"'Il are functions of the kink angle w only, and are identical to those in the Irwin
Williams solution[15). In the present case, they are given by

(20)

4. ENERGY RELEASE RATE FOR SMALL KINK ANGLE

The quantity (/3 +~) corresponds to the derivative with respect to (. of the discontinuity of
the displacement in the 't-direction and is of the order of w in the present caseJ Therefore. the
second term in the second integral in (19) is of O(w3) which can be omitted. Under the
condition state above, we obtain the required integral equations for b",(t) as follows:

(21)

where

(22)

Equations (21) are easily integrated (Appendix B), whereupon the dislocation density functions

tBy means of Taylor expansion with respect to w.
tNote that for a predominantly Mode I loadina, it may be assumed that III =0(y) and hence tiz =O(w) and til =O(w1

). For
this reason. C~l in (22) may be sct equal to I.
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From (23) it follows that the stress intensity factors at the tip of the kink are

where the stress intensity factors are defined as

III

(23)

(24)

(25)

In the limit as i.... 0, the second term in (24) vanishes and the expressions reduce to those in
(16]. It is stated in [16] that these expressions then are accurate to the first order in CtJ. Our
results show that they are in fact accurate to the second order in CtJ under predominantly Mode
I loading,

When a kink starts from a tip of a main crack, the change of the potential energy (I1P) per
unit thickness of the elastic body (plane strain) is given by

(26)

where 118 denotes the newly created area by kinking, u:~ are the stresses acting on 118 before
the onset of kinking and referred to the supplementary coordinate system, l1u~ are the
displacement increments due to kinking, and naois the outward unit normal vector of 118. From
(26), we obtain the energy release rate, G, as follows:

G t1(I1P), I' II J(" {/1, lll}d ]= ---.- (...., = 1m -:. .....,,2(ll) -- u" ll'
ill (...() .2/ 0 illi

where

In deriving (27), we have used the following conditions:

(27)

(28)

(29)

Employing the Irwin-Williams expression for u:g, and using (16), (23) and (27), we obtain,
accurate to the second order in CtJ,

G 1_,,2 K2 K2]
= --e[ 10 + 110, (30)
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or, alternatively,

where
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(3\)

(32)

(33)

The expression (30) is formally the same as Irwin's expression, in which KIO and Kilo are the
stress intensity factors existing prior to the onset of kinking fracture. The validity of (30) for all
kink angles is examined numerically in [11] and it is indicated that this relation does not hold
under certain situations. In Table 1, the energy release rates calculated from (31) are compared
with those given in Table 2 of[lI]. The results obtained here are in very good agreement with
those in[1I].

Now, if it is assumed that the crack kinks along a path where the energy release rate is locally
maximum, Le. aGlow = 0, it follows that the critical kink angle, We' is

Furthermore, applying the Griffith energy balance, the critical applied stress is

'" (12

)(Te =(TIc 1- 2 '

(34)

(35)

where (Tic denotes the critical stress in the pure Mode I loading. The critical kink angle given by
(34) is in very good agreement with those presented in [7, II] up to fairly large kink angles. For
example, when 1 = 0.05 'IT, We = - 0.1 'IT (= ISO) according to the numerical results in [I I]. and
this is exactly the same as that given by (34).

It is readily recognized from (24) and (31) that only the singular terms in the asymptotic
expansion of the stresses acting in the vicinity of the main crack before kinking, determine the
stress intensity factors and the energy release rate in the limit as the length of the kink becomes
zero, and that the higher order terms in the expansion have no effect. This feature may also
hold in more general cases than the present one, since the basic integral equations in such cases
are formally of the same form as (19) and only the kernels of the second integral in (19) change.

5. CONCLUSIONS

An analytical solution, which is accurate to the second order in the kink angle, has been
established for crack kinking under a predominantly Mode 1 loading. It is revealed that the
Irwin formula for energy release rate holds true for the small kink angles under predominantly
Mode I loading, provided that the stress intensity factors in the formula are interpreted as those

Table 1. Energy release rale, G* = G/[lTU-2a(l- .?l/EJ

G*
tr

",/TI(2 - y)/tr
Wu. (11) Present Result

0.400 -0.176 1.061 1.073

0.417 -0.153 1.049 1.056

0.433 -0.133 1.035 1.040

0.450 -0.100 1.022 1.023

0.467 -0.067 1.010 1.011

0.483 -0.027 1.002 1.003

0.5 0 1.0 1.0
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of the kinked crack with a kink of almost zero length. Furthermore, from the examination of
the results, it appears that the simple expression for the critical kink angle obtained here,
remains accurate for fairly large kink angles, approx. 20°.

Finally, it is shown that, at the onset of kinking, there are no constant term contributions to
the energy release rate in the asymptotic expansion of the stress near the tip of a straight crack.
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APPENDIX A
The requirement that the displacement is single-valued on any closed circuit surrounding the kinked crack is expressed

by

(AI)

Here and in the sequel, we denote the limiting values of a function as X2-+0+ and X2-+0- by the superscript +and -,
respectively.

From (IS),

+ i if [p ieo{X+(X1) I +X+(XI) I}+p- -ieo X+(XI) a- a { a +a I}]d- e ---- -_._- e ---- ---+-- S21T ° X(a) x,- a X(a) x,- a X(a) X,- a a(a +2a) x,- a .

The above equation, finally, leads to

where we have used

fo X+(x,) dx, .. iflX(a), fO X+(x~ dx, .. iITX(a).
_2ax,-a _2. x,-a

(A2)

(A3)
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Furthermore. in view of (\6). the second integral of (A I) becomes

From (A3) and (AS). it follows that (AI) holds.

APPENDIX B
Consider the following integral equation:

where A and B are constants.
After some manipulation. (BI) yields

f~~tdl = -A-Bv{,(O<{</).

(BI)

(82)

Since .(/) corresponds to the dislocation density functions and the stress singularity at {. =0 is weaker than I/{.. the
function y~({) vanishes at {= O. Therefore, we choose the fundamental function R{{) of the solution of (B2) as

RW= ~C~~).

Then, the solution of (B2) is given as follows[17):

I (I A+Byl
YHrl~)=;JRWJo R{t).(t_{)dt.

and. finally.

where we have used

(I dt (I vt Iva-{)+vIIJo R(I){I - {)- -11'. Jo R(t)(t - {) dl =v(/ -~) log v{/-~) _ Vi - 2vl.

(B3)

(B4)

(B5)

(B6)


